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Overview

1. Wetting and Topography

• Super-hydrophobicity

• Roughness and Air Trapping/Liquid Penetration

• Surface Structures - Lithographic Fabrication

2. Theoretical Ideas for Acoustic Waves

• Acoustic Reflections - Positive ∆f ?

• “Slip” Boundary Conditions and Trapped Mass

3. Experimental Data

• Acoustic Reflections - Positive ∆f ?



Super-hydrophobic Surfaces

Water Drop (~ 2 mm)

• Hydrophobised SU-8 - Flat versus Circular Pillars
– Height is 30 µm, diameter is 15 µm and separation is 15 µm



Wetting and Topography

Air “Trapping”
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Effect of Topography - Equilibrium

Roughness/Topography
θe

s > threshold 
⇒ enhances hydrophobicity

θe
s < threshold 

⇒ enhances film formation

Super-hydrophobic
Air “trapping” (“Skating case”)

⇒ most existing examples
Pressure

⇒ air trapping disappears
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Effect of Topography - Air “Trapping”

• Liquid Penetration into Texture
φs=solid fraction, (1- φs)=liquid fraction
r = roughness

Liquid film penetrates when:

Critical angle θc is in 0 to 90o range

φs (1-φs)
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• “Skating” Drop
Liquid bridges from one peak to next ( )1cos1cos ++−= s
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• Air “Trapping” and Roughness
Sinusoidal model gives critical roughness for 
installation of horizontal contact line 
(e.g. for 120o, rc=1.75 ⇒ jump in θe

R to > 150o)
Also, sharp features promote “skating”
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Effect of Topography - Aspect Ratio

• Air Trapping and Aspect Ratio
As roughness increases system jumps from blue to red curve
Alternatively, for given roughness, jump occurs as smooth
surface angle increases
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Experimental Approach

SU-8 Photoresist

Pillars or Holes
2-30 µm diameters
Square lattices
Different shapes
Height varied 0 to 30 µm
(bottom image is 4 µm pattern)

Maxtek and Network Analyser

Lithographic Principle SEM Images



Super-hydrophobic QCR - First View

• Effect on QCR?
Response in air versus response in water (Maxtek system)
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Anomaly or not?

• Is it possible to have a positive frequency shift?



A Mechanism for Positive Frequency Shifts?

• Effective Acoustic Cavity Length
Air ⇒ top surface of crystal has uniform reflectivity
Water ⇒ if air “trapping” occurs, reflectivity of peaks 

and troughs differs

Crystal
w-h/2

Water

Average cavity length decreases

v=fλ ⇒ f increases

Crystalw

Average cavity length exists

Air



“Slip” Boundary Condition

• Average Position of Reflecting Interface
– Slip length, b,  to model average position of a rough/diffuse 

or patterned solid-liquid interface (i.e. not molecular slip)

Negative b

effective interface moves to 
liquid side of boundary

• Boundary Condition
– Extrapolate fluid speed 

gradient from bulk liquid
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“Slip” Boundary Condition v Trapped Mass 

• Acoustic Impedance
– Use slip length, b,  and look 

at first order calculation
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• Negative b and Trapped Mass
– Define a mass as ∆mf=bρf

“slip” correction

Sauerbrey result for 
“rigid” liquid mass



Diagrammatic Interpretation 

• Negative Slip Length

Crystal

Liquid layer

slip boundary condition

Sauerbrey “liquid”
mass response

|b|

Crystal

Liquid acting 
as rigid mass

rigid “water” mass layer

Kanazawa liquid 
response

Crystal

no-slip boundary condition

Entrained 
liquid

Crystalw

• Acoustic Reflection View

Crystalw+|b|

Viscous
Entrainment

i.e. additional frequency decrease



Order of Magnitude Estimates

• Effective QCR Cavity Lengths, w
v=fλ ⇒ ∆w/w = -∆f/f (v approx constant)

f = 5 MHz w = 330 µm ∆w | ∆f |
100 Å 150 Hz
100 nm 1.5 kHz
1 µm 15 kHz
10 µm 150 kHz

• Limitations on “Slip” B.C./Trapped Mass View?
– Effectively assuming equal reflectivity at peaks and troughs 

of topography/roughness
⇒ Cannot necessarily use additivity (liquid entrainment + 

trapped mass) when air trapping occurs

• Positive ∆f?

Air “trapping” increasing f versus entrainment decreasing f ?



Liquid Penetration of Patterned QCR

• Non-hydrophobised Pillars on QCR
5 µm diameter and 8 µm high 
Response to water (Maxtek)
Response changes as water penetrates into pattern from edge
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Super-hydrophobic QCR

Single resonance in air, but double resonance in water

• Pattern Composed of Holes (& Network Analyser)

Non-hydrophobised
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Positive Frequency Shift - Anomaly?

• Recall the Anomaly
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power ~ 6 kHz 
above dry

• Micro-roughness?
For small peak-trough separation, double resonance will merge and 
distort shape of peak in water. Double resonance only occurs in 
liquid. Peak in water may appear to have higher f than in air.



Achievements

• Controlled Surface Structure
Super-hydrophobic surfaces

• Concept of Acoustic Reflection
Applied to patterned surfaces

• “Slip” Boundary Condition
Negative length = trapped mass 

• Preliminary QCR Measurements
Network analyser v Maxtek

Conclusions

The End

Comments

• Micron Length/Height Scales
Applied to QCR 

• Positive Frequency Shifts?
Entrainment versus cavity length

• “Trapped” Air?
Reflectivity of peaks v troughs

• Resonances
Double resonance in liquid



• Gordon Hayward and Jon Ellis
Matching slip length to slip parameter in boundary condition

• Mike Thompson and Richard Cernosek
Wetting, slip and diffuse interface concepts

• Ralf Lücklum
Slip parameter in boundary condition and wetting concepts

• Lisa Thiesen
Air trapping and wetting

• Edward Harding
Maxtek QCM experiments

Acknowledgements


